# WebLI Pretraining
Vit So400m Patch16 Siglip Gap 384.v2 Webli
Apache-2.0
A ViT image encoder based on SigLIP 2, utilizing global average pooling, with the attention pooling head removed, suitable for image feature extraction tasks.
Image Classification
Transformers

V
timm
19
0
Vit Giantopt Patch16 Siglip Gap 384.v2 Webli
Apache-2.0
A ViT image encoder based on SigLIP 2, utilizing global average pooling and removing the attention pooling head, suitable for image feature extraction tasks.
Image Classification
Transformers

V
timm
21
0
Vit Base Patch32 Siglip Gap 256.v2 Webli
Apache-2.0
A vision Transformer model based on SigLIP 2, using Global Average Pooling (GAP) instead of attention pooling head for image encoding
Text-to-Image
Transformers

V
timm
25
1
Vit Gopt 16 SigLIP2 256
Apache-2.0
SigLIP 2 vision-language model trained on WebLI dataset, suitable for zero-shot image classification tasks.
Text-to-Image
V
timm
43.20k
0
Vit SO400M 14 SigLIP2
Apache-2.0
A SigLIP 2 vision-language model trained on the WebLI dataset, suitable for zero-shot image classification tasks.
Text-to-Image
V
timm
1,178
0
Vit L 16 SigLIP2 384
Apache-2.0
A SigLIP 2 vision-language model trained on the WebLI dataset, suitable for zero-shot image classification tasks.
Text-to-Image
V
timm
581
0
Vit B 16 SigLIP2
Apache-2.0
A SigLIP 2 vision-language model trained on the WebLI dataset, suitable for zero-shot image classification tasks.
Text-to-Image
V
timm
11.26k
0
Siglip2 So400m Patch16 256
Apache-2.0
SigLIP 2 is an improved model based on SigLIP, integrating multiple technologies to enhance semantic understanding, localization, and dense feature extraction capabilities.
Text-to-Image
Transformers

S
google
2,729
0
Siglip2 Base Patch16 224
Apache-2.0
SigLIP 2 is an improved multilingual vision-language encoder based on SigLIP, enhancing semantic understanding, localization, and dense feature extraction capabilities.
Image-to-Text
Transformers

S
google
44.75k
38
Siglip So400m Patch16 256 I18n
Apache-2.0
A multimodal model based on the SoViT backbone network, improved with the Sigmoid loss function, supporting zero-shot image classification and image-text retrieval
Image-to-Text
Transformers

S
google
230
29
Vit SO400M 14 SigLIP 384
Apache-2.0
SigLIP (Sigmoid Loss for Language-Image Pretraining) model trained on the WebLI dataset, suitable for zero-shot image classification tasks.
Text-to-Image
V
timm
158.84k
79
Vit L 16 SigLIP 384
Apache-2.0
SigLIP (Sigmoid Loss for Language-Image Pre-training) model trained on the WebLI dataset for zero-shot image classification tasks.
Text-to-Image
V
timm
3,008
27
Vit B 16 SigLIP 512
Apache-2.0
SigLIP (Sigmoid Loss Language-Image Pretraining) model trained on the WebLI dataset for zero-shot image classification tasks
Text-to-Image
V
timm
3,787
7
Featured Recommended AI Models